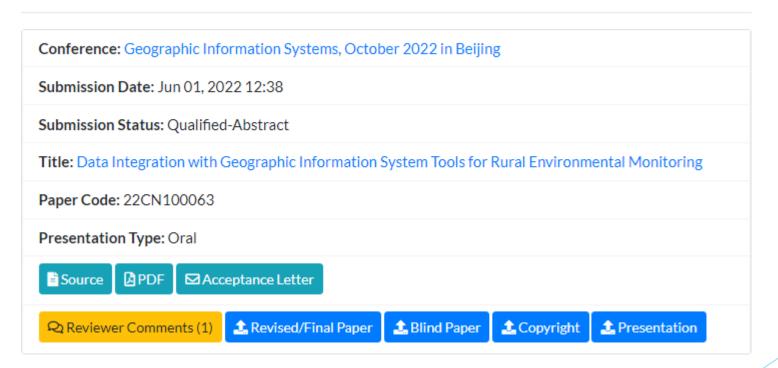
Preparation for the ICGIS Conference Browsing the collected data

Dr. habil Tamás Jancsó and Dr. Peter Udvardy


June 30, 2022

Projekt ID: 2019-2.1.11-TÉT-2020-00171

CGIS 2022: 16. International Conference on Geographic Information Systems

October 06-07, 2022 in Beijing, China

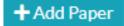
My Paper Submissions

Author Registrations

Conference: Geographic Information Systems, October 2022 in Beijing

Registration Date: Jun 29, 2022 09:52

Registration Status: Approved


Registration Type: Author

Selected Plan: Non-Student Oral/Poster Presenter Registration

Payment Type: Bank Transfer

Amount: € 450.00

Papers: 22CN100063

Data Integration with Geographic Information System Tools for Rural Environmental Monitoring

Conference

Geographic Information Systems, October 06-07, 2022 - China, Beijing

Paper Code

22CN100063

Status

Qualified-Abstract

Authors

Tamas Jancso, Andrea Podor, Eva Nagyne Hajnal, Peter Udvardy, Gabor Nagy, Attila Varga, Meng Qingyan

Keywords

remote sensing, GIS, metadata, integration, environmental analysis

Paper Type

Abstract Submission

Presentation Type

Oral

Abstract

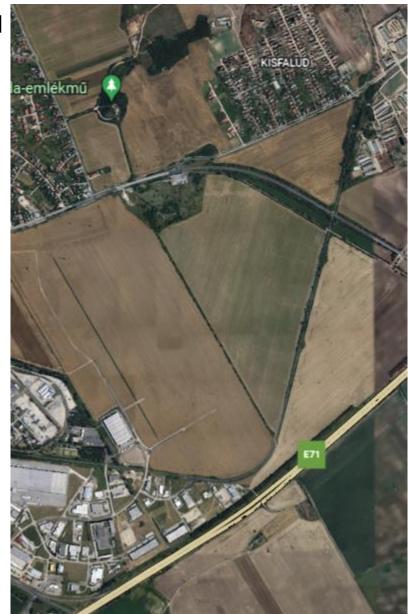
The paper deals with the conditions and circumstances of the integration of remotely sensed data for rural environmental monitoring purposes. The main task is to make decisions during the integration process when we have data sources with different resolutions, locations, spectral channels and dimensions. In order to have exact knowledge about the integration and data fusion possibilities, it is necessary to know the properties (metadata) that characterize the data. The paper explains the joining of these data sources using their attribute data through a sample project. The resulted product will be used for rural environmental analysis.

Objectives


Give an overview about the aspects of data integration in GIS where the data sources are different in resolution, covered area, time, spectral channels dimension. Demonstrate the data integration process using remote sensing data.

Methodologies

The evaluation process includes pre-processing of images, resampling and data integration for visualization, thematic mapping (classification) and numerical (area) calculations for rural environmental monitoring.

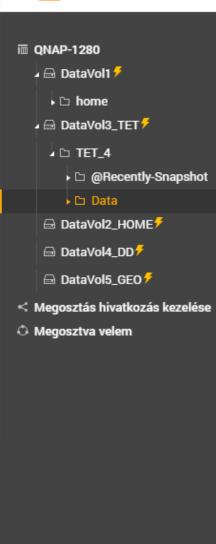

Contributions

Describe a methodology for combining data of different resolutions and sources. Carrying out a complex environmental study in a rural environment based on sample data. Demonstration of the possibilities of the software used for processing.

2013 Research Area 2022

47°12'30"N 18°28'30"E

47°10'45"N 18°30'00"E



Short explanation	Short name	Resolution	Formats	Remark
UAV mission images, orthophoto and DSM	UAV	5 cm	GEOTIFF	Year 2022
Google Map images	GOOGLE	0.5 m	GEOTIFF	Year 2022,
DDM from contour lines and SRTM	DDM	20 m	SURFER, ASCII	Original resolution is 20m, 1m GRID is interpolated
Orthophoto	ORTHO_PHOTO	0.5m	GEOTIFF	Channels: RGB
Topographic map	ТОРОМАР	1m	ENVI, GEOTIFF	Map sheet No.:54-411
WorlView-2 image	WV2	MS 2m, Pan 0.5	ENVI, IDRISI	Number of channels: 8 MS (400-1040nm), 1 Pan (450-800nm)
Hyper-spectral images	HYPER	1m	ENVI	No. of channels:253, 401.49 - 1000.24 nm

∷	• <u> </u>	- 不				
<	> (TET_4 > Data			(ン
		Név	Módosított idő ▼	Típus	Méret	+
		sentinel_szfv	2022/06/09 13:41:22	Марра		
		ОКТНОРНОТО	2022/06/09 09:28:55	Марра		
		HYPERSPECTRAL	2022/06/09 09:27:57	Марра		
		GFdata	2022/05/04 09:32:37	Марра		
		LANDSAT	2022/04/20 16:09:10	Марра		
		BEIJING	2022/04/01 11:29:37	Марра		
		AERIAL IMAGES	2022/04/01 10:04:39	Марра		
		DTM	2022/04/01 10:02:49	Марра		
		COMMON_AREA_SZEKESFEHERVAR	2022/03/26 10:35:57	Марра		
		LIDAR	2022/03/22 10:13:08	Марра		
		WORLDVIEW-2	2022/03/22 10:12:35	Марра		
		TOPOGRAPHIC MAP	2022/03/22 10:12:19	Марра		

1st Milestone - tasks and goals

- ▶ 1. Data collection from remote sensing, attribute data and existing maps:
 - a) WorldView II, RADSARSAT-2, Landsat, Lidar 3D point cloud data and Sunflower 8 satellite data from the demonstration;
 - b) GIS spatial information data(included large scale land use classification map) from the demonstration;
 - c) Crop Phenology data in the demonstration area;
 - d) Soil texture data in the demonstration area.
- ▶ 2. Studying of rural eco-environmental products using quantitative inversion and validation techniques. Available datasets are: Relevant Chinese satellite image data, basic elements of agricultural environment such as land use, topography and other series of professional maps and background data.
- ▶ 3. Making of vegetation index maps using Chinese and Hungarian satellite images.